Exclusivo Empresarial

Revendedor

$0
Identidade não verificada
ico_andr

Visão geral

ico_andr

Configuração de proxy

right
Extração de API
Utilizador e palavra-passe de autenticação
Gestor de Proxy
Local Time Zone

Fuso horário local

right
Utilizar o fuso horário local do dispositivo
(UTC+0:00) Horário de Greenwich
(UTC-8:00) Horário do Pacífico (EUA e Canadá)
(UTC-7:00) Arizona (EUA)
(UTC+8:00) Hong Kong (CN), Singapura
ico_andr

Conta

icon

Autenticação de identidade

img $0
logo

PT

img Idioma

Fuso horário local

Utilizar o fuso horário local do dispositivo
(UTC+0:00)
Horário de Greenwich
(UTC-8:00)
Horário do Pacífico (EUA e Canadá)
(UTC-7:00)
Arizona (EUA)
(UTC+8:00)
Hong Kong (CN), Singapura
Casa img Blogue img Scraping Amazon Data Using Python: A Step-by-Step Tutorial

Scraping Amazon Data Using Python: A Step-by-Step Tutorial

por Morgan
Hora da publicação: 2024-08-08

As one of the world's largest online retail platforms, Amazon's massive product and sales data provides a valuable resource for market analysis and competitive intelligence. This article will introduce how to use the Python programming language to scrape and analyze Amazon's data through the network, helping readers understand the key steps and techniques of this process.


Step 1: Environment setup and preparation


Before you start, make sure that the following necessary tools and libraries have been installed in your development environment:

Python programming environment (the latest version is recommended)


Network request library (such as Requests or Scrapy)


Data parsing library (such as Beautiful Soup or lxml)


Optional: Proxy IP service (used to avoid being detected by Amazon)


Step 2: Send HTTP request to get page data


Using the Requests library in Python, we can send HTTP requests to Amazon's website to get the HTML data of the product page. The following is a simple example code:

image.png


Step 3: Parse HTML data


Use libraries such as Beautiful Soup or lxml to parse HTML data and extract interesting information, such as product name, price, reviews, etc. Here is a simple example to get the product name:

image.png


Step 4: Data storage and analysis


Store the scraped data in a suitable data structure (such as a CSV file or a database) for further analysis and use. You can design a data storage solution according to your needs and use Python's data analysis library (such as Pandas) for data processing and visualization.

Notice Board
Get to know luna's latest activities and feature updates in real time through in-site messages.
Contact us with email
support@lunaproxy.com
Tips:
  • Provide your account number or email.
  • Provide screenshots or videos, and simply describe the problem.
  • We'll reply to your question within 24h.
WhatsApp
Join our channel to find the latest information about LunaProxy products and latest developments.
icon

Entre em contato com o atendimento ao cliente por e-mail

support@lunaproxy.com

Responderemos por e-mail dentro de 24 horas

Clicky